Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38013998

RESUMO

Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND - one of the most popular tools for function prediction - under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. This study emphasizes the critical role of search parameter settings in homology-based function transfer.

2.
Nat Commun ; 14(1): 5745, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717036

RESUMO

RNAs are fundamental in living cells and perform critical functions determined by their tertiary architectures. However, accurate modeling of 3D RNA structure remains a challenging problem. We present a novel method, DRfold, to predict RNA tertiary structures by simultaneous learning of local frame rotations and geometric restraints from experimentally solved RNA structures, where the learned knowledge is converted into a hybrid energy potential to guide RNA structure assembly. The method significantly outperforms previous approaches by >73.3% in TM-score on a sequence-nonredundant dataset containing recently released structures. Detailed analyses showed that the major contribution to the improvements arise from the deep end-to-end learning supervised with the atom coordinates and the composite energy function integrating complementary information from geometry restraints and end-to-end learning models. The open-source DRfold program with fast training protocol allows large-scale application of high-resolution RNA structure modeling and can be further improved with future expansion of RNA structure databases.


Assuntos
Bases de Dados de Ácidos Nucleicos , Aprendizagem , Conhecimento , RNA , Fases de Leitura
3.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693497

RESUMO

The sequence-specific RNA-binding protein Pumilio controls development of Drosophila; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we utilize knockdown and knockout approaches coupled with RNA-Seq to measure the impact of Pumilio on the transcriptome of Drosophila cells. We also used an improved RNA co-immunoprecipitation method to identify Pumilio bound mRNAs in Drosophila embryos. Integration of these datasets with the content of Pumilio binding motifs across the transcriptome revealed novel direct Pumilio target genes involved in neural, muscle, wing, and germ cell development, and cellular proliferation. These genes include components of Wnt, TGF-beta, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. Additionally, we identified the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pumilio-mediated repression, and observed concordant regulation of Pumilio:CCR4-NOT target mRNAs. Computational modeling revealed that Pumilio binding, binding site number, density, and sequence context are important determinants of regulation. Moreover, the content of optimal synonymous codons in target mRNAs exhibits a striking functional relationship to Pumilio and CCR4-NOT regulation, indicating that the inherent translation efficiency and stability of the mRNA modulates their response to these trans-acting regulatory factors. Together, the results of this work provide new insights into the Pumilio regulatory network and mechanisms, and the parameters that influence the efficacy of Pumilio-mediated regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...